Logarithmic Functions

The graph of the function $f(x) = 3^x$ is given below:

Definition:

If b and a are positive real numbers then $log_b a$ is the number you would raise b by to get a. In other words, $log_b a$ is the unique solution to the equation $b^x = a$.

How do you interpret the following expressions:

 $log_2 8$

 $log_{_2}\sqrt{2}$

 $log_2 10$

 log_571

 $log_2 0$

 $log_{3}(-2)$

It is very simple, but it is new to consider the expression $log_b a$ as a number, as a thing, not as something that needs to be computed.

The exponential equation $a^x = y$ is equivalent to the logarithmic equation $log_a y = x$

$a^x = y$	\Leftrightarrow	$log_a y = x$
$2^3 = 8$	\Leftrightarrow	$log_{_{2}}8 = 3$
$4^x = 64$	\Leftrightarrow	$log_4 64 = x$
$7^{x} = 29$	\Leftrightarrow	$log_7 29 = x$

Graph the functions $f(x) = log_2 x$:

Graph the function $g(x) = log_4 x$:

Graph the function $g(x) = -log_2(x+1) + 2$:

Basic Logarithm Properties :

 $- \log_b 1 = 0 \text{ (because } b^0 = 1)$ - $lob_b b = 1 \text{ (because } b^1 = b)$ - $log_b (b^x) = x$ - $b^{log_b x} = x$

Simplify the following expressions:

 $log_{_2}rac{1}{16}$

$$log_{_{5}}\left(5\sqrt{5}\right)$$

 $log_{16}2$

The common logarithm and the natural logarithm:

 $log_e x$ is called the natural log and is always written ln x. $log_{10} x$ is called the common logarithm and is usually written as log x Simplify the following if possible or give a 2 decimal approximation using a calculator if necessary:

 $ln\,(e^3\,)$ $ln \, rac{1}{e^2}$ $ln\,40$ ln(-3) $log\,100$ $log\,0.0001$ $log \, 80$

 $ln\,1$

 $\log 0$