Logarithmic Functions

The graph of the function $f(x)=3^{x}$ is given below:

Solve the equation $3^{x}=9$
Solve the equation $3^{x}=\frac{1}{3}$
Solve the equation $3^{x}=\sqrt{3}$
Solve the equation $3^{x}=7$
Solve the equation $3^{x}=26$

Definition:
If b and a are positive real numbers then $\log _{b} a$ is the number you would raise b by to get a. In other words, $\log _{b} a$ is the unique solution to the equation $b^{x}=a$.

How do you interpret the following expressions:
$\log _{2} 8$
$\log _{2} \sqrt{2}$
$\log _{2} 10$
$\log _{5} 71$
$\log _{2} 0$
$\log _{3}(-2)$

It is very simple, but it is new to consider the expression $\log _{b} a$ as a number, as a thing, not as something that needs to be computed.

The exponential equation $a^{x}=y$ is equivalent to the logarithmic equation $\log _{a} y=x$

$$
\begin{array}{lll}
a^{x}=y & \Leftrightarrow & \log _{a} y=x \\
2^{3}=8 & \Leftrightarrow & \log _{2} 8=3 \\
4^{x}=64 & \Leftrightarrow & \log _{4} 64=x \\
7^{x}=29 & \Leftrightarrow & \log _{7} 29=x
\end{array}
$$

Graph the functions $f(x)=\log _{2} x$:

Graph the function $g(x)=\log _{4} x$:

Graph the function $g(x)=-\log _{2}(x+1)+2$:

Basic Logarithm Properties :

$-\log _{b} 1=0 \quad$ (because $b^{0}=1$)
$-l o b_{b} b=1 \quad\left(\right.$ because $\left.b^{1}=b\right)$
$-\log _{b}\left(b^{x}\right)=x$
$-b^{\log _{b} x}=x$

Simplify the following expressions:
$\log _{2} \frac{1}{16}$
$\log _{5}(5 \sqrt{5})$
$\log _{16} 2$

The common logarithm and the natural logarithm:
$\log _{e} x$ is called the natural \log and is always written $\ln x$.
$\log _{10} x$ is called the common logarithm and is usually written as $\log x$

Simplify the following if possible or give a 2 decimal approximation using a calculator if necessary:
$\ln 1$
$\ln \left(e^{3}\right)$
$\ln \frac{1}{e^{2}}$
$\ln 40$
$\ln (-3)$
$\log 100$
$\log 0.0001$
$\log 80$
$\log 0$

